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Abstract

The desire for uncensored access to the Internet has
motivated the development of both open proxies like
Tor and social graph-based overlays like FreeNet. How-
ever, neither design is sufficient, as relays in open prox-
ies are easily exposed and blocked, and overlays based
just on social trust suffer from poor availability and per-
formance. In this paper, we introduce the design for
a new overlay service, Unblock, constructed from an
augmented social graph. In Unblock, multi-hop paths
through social links protect individual participants from
exposure to adversaries. Unblock achieves good per-
formance by introducing additional links in the network
graph in a manner that minimizes vulnerability. We also
develop several transport level techniques for improved
latency. We demonstrate the practicality of the system
for web traffic workloads.

1 Introduction
Unfettered digital communication, as provided by the In-
ternet, has fundamentally changed the world in countless
ways. Businesses, organizations, and citizens have ben-
efited from the Internet’s global reach. However, the In-
ternet was not designed to be resilient to censorship, and
governments have restricted communication to advance
their social and economic agendas[38, 28]. Worse, net-
work equipment providers have shown a willingness to
commoditize and profit from censorship by selling inter-
ception and filtering devices[48].

Censorship today is more than aggressive suppres-
sion of activists by oppressive governments. “Soft” cen-
sorship is rapidly becoming a pervasive force in Inter-
net communications. We define soft censorship as the
manipulation of communications without accompanying
repercussions for user actions. Selectively cropping con-
tent from a person’s daily news feed and their friends’
status updates can significantly alter the way they per-
ceive the world[11, 12]. Soft censorship allows na-
tions to exert economic pressure[14] by blocking foreign
competitors from entering markets, enabling new forms
of protectionism in the multi-trillion dollar[6] Internet
economy.

Like many security problems, Internet censorship is
not purely technical. If the adversary is a Government or
ISP, they can defeat any circumvention network through
extreme measures: whitelisting approved sites, outlaw-
ing encrypted traffic, forcing users to use hardware and
software controlled by the government, or just blocking
all international traffic. In reality, such measures carry

significant political, social, and economic costs 1. Un-
like more aggressive forms of censorship, circumven-
tion of soft censorship is not typically illegal, and such
circumvention already occurs on a wide scale. The na-
ture of the problem makes it hard to accurately report,
but surveys have found anywhere from “at most 3% of
the population”[45] to “25% of Chinese netizens”[32] to
“58% of bloggers”[46] have used circumvention tools.

This paper presents Unblock, a system resistant to soft
censorship. It provides access to websites in the face
of current censorship techniques including IP address
blacklisting, DNS poisoning, and keyword filtering. Un-
block is designed to help the majority of users who want
to access legal, but censored content. We assume users
face little risk if they are detected by the censor beyond
Internet disruption. It is not intended for use in countries
with hard censorship.

Previous research on censorship-resistant networks
has focused on routing-level network designs[57, 33, 27]
and overlay systems[17, 54, 21], but neither of these have
proven to be well suited for soft censorship. Routing-
level designs require widespread physical deployments
to be effective, which has a high startup cost. Previous
attempts at censorship resistant overlay systems either
don’t scale (in the case of single hop proxies), or focus
on anonymity at the cost of poor performance[53, 18].

Unblock is based on a third class of censorship-
resistance which rests on trusted social connections. By
asking users to explicitly connect with friends who they
trust to conceal their identity, Unblock forms a global so-
cial network. Traffic is routed over these links to partici-
pants willing to relay traffic out of the overlay (which we
call “exit nodes”) in a region where the desired content
is not censored. Multi-hop routing, coupled with security
mechanisms to prevent overlay disruption, hide overlay
participants from the censor.

Unfortunately node degrees in social networks exhibit
a power law distribution where many users only have
a small number of friends. Unblock improves perfor-
mance and availability by introducing randomized short-
cut links, untrusted connections that risk exposing a
small set of users to an adversary in order to dramati-
cally lower the median latency to an exit node. The sys-
tem also employs a custom set of transport mechanisms
optimized for such a multi-hop overlay.

In order to demonstrate that Unblock is practical for
wide-spread use, we implement it as an experimental
extension to OneSwarm[25], a popular social overlay-

1The Egyptian government’s Internet shutdown in 2011 was seen to
popularize rather than suppress anti-government feelings[24].
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Figure 1: Number of observed censorship episodes against Tor
(i.e. blocking Tor when it was previously not blocked).
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Figure 2: Number of discovered Tor bridge nodes vs number of
PlanetLab vantage points used in the crawling.

based bulk file sharing system. We evaluated the perfor-
mance of the prototype in controlled testbed settings and
measured its ability to perform web requests under vari-
ous configurations. We also evaluated the social network
augmentation techniques using a simulator to measure
the implications of our design decisions at scale. Our
measurements show that Unblock provides high avail-
ability and improved performance with minimal risk of
exposure of participants to an adversary.

2 Challenges in Building Censor Resistant
Overlays

Existing overlays are unsuitable for providing blocking
resistant services. Public open-access overlays like Tor
are easily blocked by governmental censors while so-
cial network-based overlays have poor path availability
and connectivity. Moreover, multi-hop traffic forward-
ing over overlays is slow, resulting in a low quality web
browsing experience for users. In this section, we quan-
tify these limitations to motivate the design of Unblock.

2.1 Open Access Overlays are Easily Blocked

Public open-access overlays are characterized by: (a) the
fact that any client can use their relays to construct a
circuit for routing traffic, (b) their use of a centralized
management system that publishes information regard-
ing relays. These include anonymizing overlays such as
Tor[17], Ultrasurf[54], and Freegate[21], as well as open
proxies that are used to evade censorship[23]. Regardless
of their original intended purpose, open access overlays
are a popular way for users in censored countries to reach

otherwise blocked websites[23].
Fundamentally, open access overlays are vulnerable

to blocking because of their centralized mechanisms for
distributing relay addresses to users. For example, Tor
provides a few well-known directory servers that return
certified lists of relays. As the censor can look up or
crawl all relays, these systems are as blockable as the
very websites they want to provide access to.

To quantify the extent to which countries actively
block access to Tor, we used data collected by Tor
that tracked Tor access in 152 countries over the period
from January 2010 to November 2011[52]. The num-
ber of clients that connected to each of the Tor direc-
tory servers were aggregated into two week periods by
country. These totals were compared with the preced-
ing period. Finally, these ratios were normalized to the
total number of Tor users around the world for the two
corresponding periods. The two week period acts as a
low pass filter, minimizing variations in usage. By nor-
malizing against the global user count, the analysis also
accounts for overall trends in Tor usage.

We then define a censorship episode as an event where
the Tor usage in a country where Tor is normally un-
blocked drops more than four standard deviations be-
low expectation. Figure 1 illustrates the results from this
analysis. We were surprised to see that out of 152 coun-
tries, 49 countries had a censorship episode during the
two year period, and several had multiple such episodes.

In response to these blockages, Tor has added semi-
secret relays called bridge nodes. Unfortunately,
the same mechanisms implemented to help users find
bridges can be abused to identify and block bridges. Al-
though Tor limits the number of bridges exposed to any
given IP, this restriction is ineffective against a resource-
ful censor in possession of a diverse set of IP addresses.2

For Figure 2, we crawled the Tor bridge discovery mech-
anism from multiple vantage points on PlanetLab. We
found that by requesting bridge nodes from multiple lo-
cations, we were able to discover the IP addresses of
nearly 240 bridge nodes in Tor. In fact, this included
almost all of the Tor bridge nodes that were distributed
through HTTP during the measurement period[5]. One
could easily imagine a censor using similar crawling
techniques to find and block bridge nodes. Reports con-
firm that China already blocks bridge nodes[53].

2.2 Social Network Based Overlays Have Poor Con-
nectivity

Social network overlays have been explored in the
past to improve trust and security. Examples include

2Tor also uses other mechanisms for distributing bridge nodes, such
as automatic email responses to email queries for bridge nodes from
Gmail accounts. These mechanisms are equally susceptible to crawling
attacks, especially since researchers have demonstrated that one can
acquire Gmail accounts for about $0.30 per account[37].
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Figure 3: Fraction of nodes with paths to exit nodes on different
social network datasets for varying node uptimes and with 10%
of the nodes being exit nodes.

the Ostra[36] email service, the OneSwarm[25] sys-
tem for anonymous P2P file-sharing, and the Drac[15]
anonymizing overlay.

Social overlays route user traffic to “exit nodes”, nodes
located in non-censored domains willing to make con-
nections on behalf of other users, in order to provide
access to blocked websites. Social overlays are an at-
tractive option for resilient service because the network
can be formed in a completely decentralized fashion. As
each user joins the overlay by connecting to his explicitly
trusted peers, no single user (including the censor) can
discover the identities of more than a few participants.

Unfortunately, availability in social overlays tends to
suffer from sparse connectedness. We measured the net-
work properties of a number of social networks, includ-
ing Youtube, Flickr and Foursquare using datasets col-
lected by[35, 47]. These measured networks are likely
to have much denser connectivity than a social over-
lay formed for censorship circumvention. Nevertheless,
most nodes in the measured networks have at most a
handful of links to other peers and a large number of
users have only one social link. This is particularly prob-
lematic in a setting where users, essential for connectiv-
ity, nevertheless come and go as typical for a P2P system.

We simulated the availability of paths through these
social networks under varying churn (percent of time
users spend online) when 10% of participants serve as
exit nodes. Figure 3 shows the results of this experiment.
We find that the availability of working paths is highly
susceptible to churn. Due to the stringy nature of these
social networks, churn disconnects some nodes entirely
from any exit node, lowering the total connectivity to exit
nodes from 100% to around 50% for typical node upti-
mes seen in peer-to-peer systems[51, 22, 44, 31]. Per-
formance is also likely to suffer as connectivity degrades
under churn. In our simulations, a small set of nodes
relay hundreds or even thousands of paths making them
critical to the success of the system. The performance
of these networks is thus limited by the availability and
bandwidth of this small set of nodes, reducing overall
system robustness.

Site Direct (ms) Tor (ms) Slowdown
Google 360 6,055 16.8

Facebook 649 7,982 12.3
Amazon 1758 13,982 8.0

Twitter 1588 9,306 5.9
Yahoo 1419 10,546 7.4

Figure 4: Slowdown introduced by Tor for loading popular do-
mains in January 2012.

2.3 Overlays Have Poor Transport Performance

Both open-access and social-network based overlays suf-
fer from transport inefficiencies that undermine their us-
ability. In general, overlay networks have suboptimal
performance as data is transferred multiple times across
the overlay, resulting in higher latency and greater possi-
bility of traversing congested links.

To characterize the latency of overlay communica-
tions, we performed measurements of page load times
over Tor compared with “normal” direct connections
from a set of 17 geographically diverse PlanetLab nodes.
As can be seen in Figure 4, the page load time for popular
sites increases by a factor of up to 20x when web pages
are loaded over Tor. This is consistent with the issues
outlined in[52, 18]. Figure 5 shows the same experiment
for the Alexa top 100 sites [1], the median page load time
is increased from 2.3s to 12.6s.3

The performance inefficiencies of overlay networks
are generally attributed to three factors. First, forward-
ing traffic over multiple end-hosts limits the throughput
to the slowest link. For example, in Oneswarm, multi-
hop overlay paths have an average throughput of only 29
KBytes/s, leading to poor performance unless multiple
paths are used[25]. Second, in Tor, all traffic between
any pair of overlay nodes, even if they represent circuits
for different clients, are multiplexed over a single TCP
connection. This mixing results in interference across
circuits during congestion control and large queueing
delays[42]. Third, location is an important factor in over-
lay path selection. Nodes located nearby geographically
often have low latency and are connected by relatively
few intermediate routers. One of the benefits provided
by social network based overlays is that the majority of
social links connect geographically close nodes[47]. In
contrast, many open access overlays do not use location
as a factor in path selection, resulting in higher average
per-hop and end-to-end latencies. Systems like Tor are
slow precisely for these reasons, and not the availability
of resources in the system as a whole.

3Roughly 20% of Alexa top 100 domains did not load successfully
during our experiment. Causes include: no main page (e.g. googleuser-
content.com, bp.blogspot.com), blocking either by institution (in the
case of pornography) or a censor (e.g. taobao, qq). Many Chinese sites
are not accessible either from Tor or PlanetLab due to network-level
blocking.
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Figure 5: Load times for Alexa’s top 100 domains in January
2012. Measurements are averaged from 17 geographically di-
verse PlanetLab nodes.

3 System Design
In this section, we describe the design of Unblock that
aims to combine the privacy, security, and locality prop-
erties of social overlays with the flexible and robust con-
nectivity of open access overlays. We first discuss the
adversarial model that we use to inform the design of
our system, outline the overall approach given the ad-
versarial model and the challenges raised in the previous
section, and then provide a detailed description of the
various mechanisms.

3.1 Adversaries and Threat Model

We model our censor based on existing soft censorship
practices seen in many parts of the world. Content cen-
sorship is performed using technical, rather than police,
means – i.e., the censor silently blocks or alters access to
certain sites but does not impose real-world punishments
on users for using anti-blocking software. We assume
that the censor has direct control over the routers inside
the censored domain and is able to disrupt communica-
tions based on matching patterns in the packet header or
content. Studies have confirmed that censors exploit this
control to block content by polluting DNS entries, block-
ing IP addresses, or blacklisting keyword terms[41, 4].

The censor is also able to infiltrate a limited number
of social links, giving it access to the overlay. It is free to
generate, modify, and delete protocol messages flowing
through nodes it controls, record timing and other infor-
mation, and correlate traffic from multiple nodes. We call
adversary controlled nodes moles, since they infiltrate the
social network to spy on and disrupt the network.

Importantly, our adversary does not employ a whitelist
(blocking all traffic except allowed sites), seize client
machines, or otherwise coerce all users into revealing
which friends are running the Unblock software. If the
adversary were to prohibit all encrypted communications
or only allow connections to adversary-controlled desti-
nations, then our approach would not be effective.

While Unblock is neither sufficient for users in some
countries, nor guarantee anonymity, it does provide re-
silient access to the vast majority of blocked material.

Most blocked content is not explicitly illegal or for-
bidden at all, but rather the collateral damage resulting
from imprecise blocking of forbidden content. For ex-
ample in China, when a user accesses content with for-
bidden keywords, users are prevented from accessing the
same IP address and port for a short period of time[41].
While censors have routinely targeted and blocked major
anti-censorship systems, there has been no reported in-
cidence of users being punished for using anti-blocking
software[39].

3.2 System Overview

We proceed in three steps to build a blocking-resistant
overlay that can be used for interactive web browsing.

• Unblock is based on a social-network based overlay
wherein users who have real-world trust relationships
establish a communication link between their corre-
sponding nodes and use it to convey overlay traffic.
We use a social overlay because it is easier to keep par-
ticipation largely secret – individual members might
be compromised by social engineering attacks, but it is
harder to systematically expose and block a significant
fraction of overlay communications. This fact also im-
plies that the trust relationships used to form overlay
links in this setting are more restrictive than those in
a typical online social networks such as Facebook. In
particular, users establish relationships only with those
they trust to not collude with a censor and reveal their
identities. We still need mechanisms for rendezvous
and routing – that is, we need a way to discover the IP
addresses of friends, to discover paths to exit nodes, to
figure out which exit nodes are willing to do what ser-
vices, etc. A key challenge is that these mechanisms
need to be resistant to blocking. (See Sections 3.4 and
3.5.)

• To improve availability and performance of multi-hop
communication, Unblock augments the social overlay
with additional random links that provide shortcuts
and a greater diversity of paths. Crucially, this mech-
anism reveals only a bounded amount of membership
information to an attacker. (See Section 3.3.)

• The augmented overlay path is still subject to transport
inefficiencies that afflict overlay mix networks. To ad-
dress the performance issues, Unblock includes trans-
port layer mechanisms to achieve reasonable latency
and throughput. In particular, it transmits across mul-
tiple overlay paths, performs datagram based trans-
port at each overlay hop and end-to-end congestion
control across the entire overlay path, and employs
a back-pressure based mechanism to reduce queueing
and packet loss. (See Section 3.7.)

In the remainder of this section, we elaborate on these
mechanisms and also discuss their robustness in the face
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of adversarial attacks.

3.3 Hybrid Overlay Network

As we discussed in Section 2, relying on social network
links is insufficient because of sparse connectivity and
churn. To supplement connectivity, we use a hybrid over-
lay: we add links to approximate a random overlay net-
work. The augmented network provides users with a few
additional peers that are likely located at random points
in the social network. In addition to providing users with
redundant connectivity to the overlay, these additional
untrusted links provide shortcuts to remote locations in
the overlay.

Before we describe the augmentation mechanism used
in our system, we examine some of the desired properties
of such a mechanism.

• Any augmentation mechanism that exposes locations
of relays may be abused by an adversary. A key chal-
lenge then is to minimize the extent to which an infil-
trating adversary can exploit this mechanism to iden-
tify and subsequently block relay nodes.

• We require the mechanism to operate in a distributed
setting, without requiring a centralized coordinator
(which could be blocked) and without allowing for
systematic exposure of social network connections or
the identities of overlay nodes.

• Additional links should be to nodes that are not in
a node’s immediate neighborhood; this reduces path
length to far away exit nodes and also increases ro-
bustness to correlated churn.

• We require the set of untrusted links to be stable over
time in order to enable precomputation of paths to exit
nodes and also to reduce the leakage of node identities
to adversaries.

Our approach is to provide each overlay node with a
set of untrusted links based on its position in the social
overlay. We view a node’s social network connectivity
as a unique capability and develop a distributed mecha-
nism for providing each node with additional links based
on its location. This mechanism is an extension of the
random walks used for sybil detection[60]. When adver-
saries infiltrate the social overlay, our mechanism bounds
the number of nodes exposed to moles to be proportional
to the number of attack edges controlled by the adver-
sary, where an attack edge is a social link between a nor-
mal user and a mole who has infiltrated the system. Im-
portantly, our mechanism ensures that moles would not
be able to accumulate an arbitrary number of untrusted
links by mounting a Sybil attack wherein each mole as-
sumes multiple identities behind a single attack edge.
Preliminaries: The protocol adds untrusted links by per-
colating collections of randomly sampled overlay nodes,
referred to as random node lists (or RNLs). Each over-
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Figure 6: Example of the addition of untrusted links. In this ex-
ample, an RNL is propagated through the path F-I-H-G-D-E-A-
X. Nodes F, I, G, and A add themselves to the propagated RNL.
Node X can then establish direct untrusted links with nodes F,
I, G, and A when it receives the RNL. Both trusted and untrusted
links can be used for data transfers.

lay node is identified by its public key and the IP ad-
dress and port at which it can be contacted. The RNL
is an ordered list of these identifiers, with the last ele-
ment being the node that has been most recently added
to the list. RNLs are propagated through the edges of the
social overlay (also referred to as trusted links). Nodes
probabilistically add themselves to RNLs before propa-
gating them further. A node receiving an RNL can then
establish untrusted links to nodes identified by the RNL.
New shortcut connections to these nodes are labeled as
untrusted and are not used for propagating RNLs; these
shortcuts are used exclusively for routing overlay traffic.
RNL Propagation: RNLs are not flooded but rather
propagated through specific paths within the trusted so-
cial network. An epoch is just defined to be “a long time”
– a period of time where the majority of users in the sys-
tem have changed their IP addresses and therefore the
identity of nodes discovered in previous epochs is of lit-
tle value to an adversary. This period can be on the or-
der of a few days to weeks, depending on the underlying
network [58]. At the start of the epoch, each node will
take a snapshot of its current trusted links, hash the iden-
tity of each neighbor with a local secret, and use these
as the set of IDs in a consistent hashing keyspace [26].
The resulting keyspace is used to determine where to for-
ward incoming RNLs. The outgoing link is chosen as the
link preceding the incoming link in the keyspace. The
keyspace is fixed for the duration of an epoch. The use
of consistent hashing implies that RNLs provide the same
deterministic set of untrusted links during an epoch, and
tries to minimize changes between epochs when new
trusted links are added to the social overlay.

Upon receiving an RNL through a trusted link li, node
x does the following:

1. If x has less than k friends, it will consider con-
necting to each item in the RNL with probability
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Figure 7: Example of RNL propagation. Node F has hashed its
neighbors as I → C → H . Advertisements from I are passed
on to C. Since C has no other friends, it will send the same list
(possibly adding itself) back to F .

(k − l)/k ∗ l. In the epoch, x will see l lists of k
items, and attempt to connect to k − l of them in
order to maintain k total links.

2. x adds itself to the incoming RNL with probability
p. This random choice is seeded using its own node
ID and li; thus a node might add itself to an RNL
received through some of its trusted links, but not
others.4 This will be stable across epochs.

3. Upon adding itself to the end of the incoming RNL,
x ensures that the size of the RNL is bounded by the
parameter k. If it exceeds k, x removes the very first
element, or the farthest node, from the RNL.

4. x then propagates the RNL through one of its trusted
links, choosing the one, lo, that precedes li in the
consistent hashing keyspace.

Figure 6 provides an example of how RNLs are con-
structed and propagated through the trusted links.

We add a few refinements to the scheme described
above. First, high degree nodes forward RNLs but never
add themselves (p = 0). This avoids hotspots, prevents
discovery and blocking of high-degree nodes, and al-
lows for the propagation of nodes with lower degrees.
Second, any node can choose a security policy of never
adding its identity to RNLs. This security setting allows
users in regions that practice strong censorship prioritize
anonymity over availability and performance. Finally,
RNL propagation is only possible when a node and its
neighbor are both online. If the neighbor is offline, we
store RNL updates in encrypted per-link mailboxes in a
DHT. When the neighboring nodes come online, they re-
trieve these queued messages from the DHT, forwarding
them as appropriate. (We discuss the design of the DHT
in 3.5.)

The RNL propagation mechanism limits an adver-
sary’s ability to discover relay addresses:

4This allows for many nodes to be propagated over some paths as
opposed to propagating a few nodes over many paths, which would
result in hotspots in the augmented overlay.

• Local random decisions are seeded using only the lo-
cal node ID and the incoming link ID. Thus repeated
invocations of the RNL propagation mechanism do not
reveal any additional relays than earlier RNL messages
from the same epoch.

• A mole with a single attack edge will discover the
identity of at most 2k participating nodes in the sys-
tem. In Figure 7, the mole X would only receive the
k items forwarded by A, and could receive up to k
additional connections upon forwarding a malicious
list of items back to A. The attacker would receive
no additional information from the presence of Sybils
w, v, y, z. Thus, any censor’s ability to find partici-
pants will be limited by the number of moles and the
edges it controls.

Parameter settings: Unblock is parameterized by p and
k. We set these parameters based on the estimated size
of the network (n) and the expected probability that a
typical node is online in the system (f ). If we set p to
1/log(n), then any two nodes propagated through an RNL
messages are likely separated by log(n) hops in the social
network. It has been shown that many social networks
have the small-world topology property in that a se-
quence of log(n) random hops through the network often
leads to a random node within the network [9, 20, 60].5

Further, if we set k to c/f , where c is a small constant,
then c of the hops provided by an RNL message are likely
to be active at any instant in time, given that the upti-
mes of random nodes are likely to be uncorrelated. This
allows any node in the system to have access to c addi-
tional, randomly distributed relay nodes.

It is also worth noting that the above mechanism has
other desirable properties. First, high-degree nodes criti-
cal for network connectivity are protected from being re-
vealed, as these nodes do not append themselves to RNL
messages, thus allowing for improved path diversity to
low-degree nodes. Second, RNL messages propagate k
relays across each trusted link that separates a censored
domain from other uncensored domains. Thus, the aug-
mentation mechanism will likely increase the number of
overlay connections across ISP or state boundaries by a
factor of k.

In summary, the described mechanism results in a hy-
brid overlay that augments the underlying social network
with additional links that approximate a random overlay
network. Crucially, the mechanism maps the location of
a node in the social network to a set of random nodes in
a consistent and crawl-resistant manner, thus limiting the
leakage of relay identities and safeguarding against Sybil
attacks.

5The augmented overlay will have increased availability even if
nodes in RNLs are not randomly sampled nodes. The benefit of ap-
proximating a random sampling is that it bounds the diameter of the
augmented overlay [7].
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3.4 Accessing the Internet through exit nodes

Unblock uses exit nodes to create a bridge between the
overlay network and the public Internet. Exit nodes
can either provide global Internet connectivity or re-
strict access to a small set of services. The user run-
ning the exit node is free to specify the exit policy of
their node. Running an exit-node with global connectiv-
ity has been problematic for other networks6, motivating
the more expressive policy. In Unblock, a user can opt to
only provide access to certain domains (e.g., only access
to wikipedia.org, twitter.com, google.com, and nothing
else), to reduce the risk of abuse. Service providers that
wish to improve access to their own site can run their
own nodes providing access to only their service. In this
latter case, the provider may keep information about the
exit node (such as its IP address) private, creating an ef-
fect similar to Tor hidden services.

In order to contact an exit node, a peer must first know
of its existence. In Unblock, each exit node is identified
by a public key, along with a recent announcement po-
tentially signed by the Unblock directory service.7 The
announcement asserts which services are accessible from
the node, and where the node is located (e.g., country or
ISP domain).

Exit nodes announce their presence periodically
through announcement messages. When nodes receive
an announcement, they immediately forward the an-
nouncement to their neighbors. The return paths of these
announcements determine a minimum latency routing
tree that is used when communicating to the exit node.
Announcements contain a timestamp, a nonce, the hash
of the public key of the exit node, an optional set of exit
node properties (such as the region where the node is lo-
cated and domains reachable through the node), and an
optional signed attestation from the directory service that
the announcement is indeed from the exit node.

Given the augmented overlay structure of Unblock,
there are often a large number of possible paths to choose
from when routing to an exit node. The goal of the rout-
ing protocol is to provide: (a) minimized end-to-end la-
tency, (b) multiple parallel paths when available, and (c)
resilience to node failure/churn.

Our approach uses announcement paths to connect to
exit nodes. Announcements create a minimum spanning
tree, but the tree will often be invalid due to churn. To
keep the tree current, nodes update their neighbors with
their new latency when their minimum latency link dis-
connects or reconnects. To find multiple paths to an exit,

6For example, law enforcement sometimes misattributes traffic
from a Tor exit node to the owner of the node.

7The purpose of the directory system is described in 3.6. The di-
rectory service is replicated, e.g., on PlanetLab nodes in our current
deployment, to ensure higher availability and reachability, and can be
accessed directly or through the Unblock overlay.

clients route through multiple links for the first hop and
then traverse the spanning tree from then on.

Signed announcements imply that the signer has veri-
fied the claims in the announcement, helping to validate
client trust. Exit nodes which cannot obtain a signature
from the directory server may participate in the system
either by offering a local service, which clients must ex-
plicitly connect to, or by offering their own directory
server, and encouraging clients to trust that authority.

3.5 Internal Overlay DHT

Unblock includes a DHT for two purposes: (a) as a mail-
box for communicating RNL messages to offline peers
and (b) as a rendezvous service for locating the current
IP address of peers when a node rejoins the overlay[25].
We cannot rely on an external DHT, such as OpenDHT
or Vuze’s DHT, as access to these can be blocked. The
system therefore has to provide a DHT-like functionality
using just the nodes participating in the overlay. An addi-
tional restriction is that the DHT implementation should
not expose the identities of nodes participating in the sys-
tem; that is, DHT operations should be performed using
just local information comprising of the trusted or un-
trusted links known to the participants. Another require-
ment is that the DHT needs to be robust to byzantine
moles operating as DHT service nodes.

The DHT is created by partitioning keyspace across
the exit nodes that participate in the system. Both ob-
jects and exit node identifiers are hashed onto a circu-
lar keyspace, and objects are assigned to the exit node
that is closest to it in the keyspace. To perform lookups
and updates, we leverage the fact that the exit node an-
nouncements create a routing table at each node in the
system. This table contains the next hop to route to each
exit node. When a node wishes to query the DHT it can
first look at its local routing table to find the exit node
most adjacent in key-space to the desired key. The node
then routes the query to the exit node through the appro-
priate neighbor, and nodes along the way maintain state
in order to route the reply. There is no guarantee that
the querying node knows about all exit nodes,8 so each
hop along the path computes the closest known exit node
to the target key and routes the query towards it. DHT
lookups can be routed through both trusted and untrusted
links, increasing resilience.

This scheme is essentially a variant of Virtual Ring
Routing [10], where nodes are able to provide a DHT-like
abstraction by routing messages through their neighbors
in a physical network. Our approach adds an additional
restriction in that the DHT storage is hosted on just the
signed exit nodes (as opposed to all overlay nodes) in or-
der to improve both security and performance. First, if all
nodes are allowed to serve as DHT storage nodes, then

8This can happen immediately after startup for example.
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an adversary can mount Sybil attacks and lower DHT
availability [55, 50]. Second, since most nodes would
have received validated exit node announcements, they
can directly route towards the appropriate storage node
without requiring recursive lookups as in [10].

The DHT is used to perform rendezvous for nodes re-
joining the system. In order to reconnect, nodes use the
system-internal DHT to update their current address to
friends. All that is required for reconnection is that at
least one previous connection remains at the address it
was last seen.

3.6 Overlay Security: Attacks and Defenses

There are two key considerations in the design of the
overlay routing and transport protocol used in Unblock.
The most important is defense, which prompts the use
of secure DHT access, per-hop and end-to-end encryp-
tion, and of mixing messages from different connections
into packets to protect users from an adversarial network.
The second goal for the protocol is performance, which
motivates the use of a custom application-level wire for-
mat, multi-path support, and UDP datagrams rather than
TCP connections. We discuss these two separately, first
laying out the security properties of Unblock communi-
cations, and then sketching how we gain performance
within those constraints in 3.7.

The Unblock protocol encompasses several stages:
new friend establishment, rendezvous, connection estab-
lishment, choice of exit node, and data transfer. Below,
we discuss how Unblock prevents the exposure of node
identities to an adversary and limits his ability to disrupt
overlay communication for each stage.
Friend Establishment: Friend connections are estab-
lished using existing mechanisms from the OneSwarm
network. Willingness to relay arbitrary bulk data be-
tween friends is very similar to willingness to relay en-
crypted web traffic between friends. OneSwarm allows
users to add untrusted links from bulletin boards to fill
out the social network graph; we do not use those links,
as our shortcut links provide the same goal with less risk
of disclosure.
Rendezvous: Unblock uses the DHT to store IP address
information needed for rendezvous. The stored infor-
mation is encrypted to ensure that the DHT cannot be
crawled to determine the IP addresses of the nodes par-
ticipating in the overlay. Specifically, each node is iden-
tified by a 1024 bit RSA key pair. This key is persistent,
even if the IP address of the peer changes. At startup, a
node will insert a copy of its current connection informa-
tion (IP address, port number) into the internal DHT for
each of its direct links. These copies will be encrypted
with the public key of the neighbor, and indexed into the
DHT using a 20 byte, randomly generated shared secret,
agreed upon during the first successful connection. This

ensures the secrecy of both the key and its contents.
Connection Establishment: Unblock connections be-
tween neighbors use SSL based on the nodes’ RSA key
pairs. This prevents an adversary from knowing what
service is offered, probing the connection to identify
whether a given node is running Unblock9, or distin-
guish it from other SSL connections. Control messages,
such as DHT searches and exit node announcements oc-
cur directly within this connection. As part of connec-
tion establishment nodes also detect if they can transmit
UDP packets to each other, and data transfer will occur
through encrypted UDP packets when possible. We do
not believe the presence of both TCP and UDP connec-
tions between nodes is enough to fingerprint Unblock be-
cause both connection types are also used by a range of
remote desktop and real time chat protocols.
Exit Node: An important property of the Unblock proto-
col is resilience to adversaries claiming to offer exit capa-
bilities. The two mechanisms a malicious exit node can
leverage to directly attack the system are: (1) flooding
announcements to overwhelm the system, and (2) black-
holing received traffic. We mitigate these attacks through
certification. Nodes in the system will only forward exit
node announcements if they are signed by a trusted di-
rectory service. This property allows the trusted service
to throttle the total rate of exit node announcements on
the network and to verify the functionality of exit nodes
before signing proposed announcements. Exit nodes will
periodically request certification from the directory ser-
vice through the Unblock overlay. In order to limit sybil
attacks on the directory server, we require computational
puzzles to be solved as part of the certification request.

The use of a directory server does open additional
channels of attack that we must now address. First, if an
adversary controls a node on an announcement path, it
can selectively forward only the announcements for exit
nodes it is colluding with. This attack is mitigated by
the presence of shortcut links, which allow nodes expo-
sure to additional announcement paths via random nodes
in the overlay and forces an adversary to fully partition
the network for an effective attack. Secondly, an adver-
sary may attempt to directly attack the directory server,
through a denial of service attack. The service can be
built to withstand such attacks, since it can run across
multiple machines and addresses to increase availability.
If the service is successfully taken offline, the only nega-
tive effect is that advertisement trees may become stale.
Data Transfer: Once channel establishment has oc-
curred, the end-to-end data stream is encrypted with AES
based on the shared secret negotiated during connection
establishment. This prevents a malicious relay from see-
ing the contents of the communication. The data stream

9This probing technique is used by China to identify secret Tor
bridges.
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is packetized, and packets can be sent over any available
path to the destination, which means a relay cannot know
if they are seeing the entire conversation.

Packets themselves are sent using per-hop DTLS, so
different data will be seen entering and leaving each
node. The use of DTLS also makes Unblock data in-
distinguishable from VPN and VOIP applications which
use the same packaging. Nodes also pack each datagram
full, by appending small packet acknowledgement mes-
sages, and then padding the message to the MTU size in
order to frustrate message size correlation.

3.7 Overlay Performance

A usable system needs to provide an acceptable level of
performance for typical interactive browsing. We made
several protocol decisions to minimize the inefficiencies
of overlay transport. These include: the use of UDP data-
grams with custom flow control, the ability to take advan-
tages of multiple paths through the overlay, and a custom
application-level protocol for web requests.

Datagram Flow Control: Path conditions can change
due to churn or temporary bursts of traffic. Tor multi-
plexes traffic between nodes, with multiple independent
flows multiplexed onto a single reliable TCP connection
between adjacent relays. When these flows have differ-
ent characteristics, the multiplexing can result in sub-
optimal performance for all flows traversing the link.10

The most immediate issue is that small, latency sensitive
flows can get “stuck” behind larger bulk data transfers.
To address this issue we use a datagram based transport
at each overlay hop and end-to-end congestion control
across the entire overlay path. This minimizes the inter-
ference between flows that share the same overlay hop.

Nodes in the system can have very different upload
capabilities, which will result in queuing. Flows orig-
inating at a high bandwidth node will quickly fill the
buffers of subsequent low bandwidth relays. Aggravat-
ing this issue, overlay paths span multiple hops, often
spanning several continents. End-to-end congestion con-
trol responds to congestion over timescales of RTT, lead-
ing to slow ramp up and slow recovery from loss. We
address these issues by adding explicit per-hop flow con-
trol, where nodes communicate how much they are will-
ing to buffer for each active connection.

This mechanism minimizes queueing and eliminates
packet loss on overlay nodes by regulating the flow of
data from upstream nodes using credits. Credit to send
data to a downstream node is replenished through control
messages. When a node detects that a queue is build-
ing up, it stops issuing credits to upstream nodes, thus
temporarily slowing or stopping the flow. This design

10Prior studies have diagnosed these issues in the context of Tor and
proposed backwards-compatible fixes to Tor, while retaining the basic
per-hop TCP transport and single path transfers [18, 2, 42].

is similar to mechanisms used in ATM networks [29],
which suggest that some queue must be allowed to form
in order to fully utilize the bottleneck node [49].

Nodes in Unblock therefore detect if they are a bottle-
neck, and manage their credits accordingly. Nodes can
detect that they are non-bottleneck nodes when they are
limited by credits rather than their own bandwidth. This
allows us to fully use available throughput while mini-
mizing latency at intermediate hops.

End-to-end Congestion Control over Multiple Paths:
The routing algorithm ideally yields multiple paths to a
specific exit node. Data from the incoming stream is split
into chunks, which are then transmitted across all avail-
able paths using UDP datagrams. The receiving endpoint
assembles the packets and delivers it to the application in
the correct order. Unblock handles congestion over end-
to-end paths using a TCP style transfer window for each
overlay path that is updated using the traditional additive
increase multiplicative decrease mechanism upon packet
losses over that path (as in MPTCP [56]).

We also use a redundancy mechanism to balance the
goals of latency and throughput. Based on how much
data has been transmitted, the sender will determine if
the stream is a data-intensive, throughput-bound stream,
or a bursty, latency bound stream. Initially, all transfers
are assumed to be latency sensitive and messages will be
duplicated and sent along multiple overlay paths. The
amount of duplication is steadily reduced as more bytes
are transferred over the end-to-end path. This balances
the goal of minimizing latency when transmitting small
pieces of content with the goal of using all of the avail-
able throughput for larger transfers.

Application Level Protocol: While our transport sup-
ports tunneling arbitrary TCP connections, we also pro-
vide an optimized protocol for web requests, using a
local SOCKS proxy on the client and a custom server
on the exit node. This addition is preferable to running
a SOCKS proxy on the exit node directly, because the
SOCKS protocol is chatty, and several round trips are
spent between the client and the proxy at the beginning
of every connection. By resolving that locally, we can
send web requests along with the destination information
in the first data packet sent to the exit node. Unlike a nor-
mal SOCKS proxy, the previous announcement from the
exit node has informed the client which domains are sup-
ported by it, nor do we need authentication at the SOCKS
layer.

3.8 Deployment

Unblock leverages resources provided by the participants
in the system in order to provide a self-scaling network,
in contrast to other systems which pay to operate a num-
ber of proxies[54, 21] or those systems where there is a
distinction between users of the system and relays that
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constitute the transport infrastructure (e.g., Tor).
Unblock is currently built as an extension to

OneSwarm, which is also a social-network based over-
lay that enables privacy preserving peer-to-peer file shar-
ing [25]. Bundling Unblock with another application ad-
dresses some of the challenges associated with deploy-
ment and incentives. First, it allows us to the develop
and test our system under real-world conditions by en-
abling experimental extensions on nodes already convey-
ing OneSwarm traffic. Second, since OneSwarm is ac-
tively used by thousands of users daily, initial users of
Unblock can benefit from a resource-rich network com-
prising of users in countries with little or no censorship.

We do however have to ensure that the incentives for
the two types of users are reasonably aligned. For in-
stance, there should be benefits for OneSwarm users to
serve as relays for Unblock traffic, considering that Un-
block users would not necessarily participate in file shar-
ing. Interestingly, by establishing trusted or untrusted
links with Unblock users, OneSwarm users can have
larger degrees of connectivity, which in turn translates
to more diversity of overlay paths between OneSwarm
users. In other words, it suffices that Unblock users are
passive transport relays as opposed to active file sharers.

4 Evaluation
In this section, we present experiments that evaluate Un-
block. Currently, the Unblock extension has been en-
abled by a small fraction of OneSwarm users who have
opted in experimental updates, and we do not have access
to the topology of the user base, so it is difficult to quan-
tify the performance and robustness of Unblock using the
deployment. We therefore evaluate Unblock using simu-
lations and controlled wide-area testbed experiments.

We use a simulator to evaluate the security and perfor-
mance properties of Unblock at scale. We measure the
impact of using an augmented overlay. Shortcut links
are shown to maintain connectivity for more nodes for
typical uptimes seen in peer-to-peer systems. We then
explore the trade-off between better availability and risk
of disruption of service by a censor adversary.

Next we evaluate the performance of our transport
layer implementation using a multi-hop test framework
in PlanetLab. We examine the individual mechanisms
that comprise the transport layer used in Unblock and
also compare its performance against standard transport
mechanisms used in systems such as Tor.

4.1 Simulation Results

Using the simulator, we find that the shortcut discovery
protocol effectively improves the connectivity to any par-
ticular exit node in the face of churn, while restricting
the number of honest users that are exposed to a censor’s
moles in an attack. Even with a strong model of an ad-

versary that can block all edges of the exposed nodes in
the network, shortcuts effectively improve connectivity.

We perform these measurements using simulated net-
works based on the datasets collected by [35, 61]. For
some of these datasets, as in the Youtube social network,
we were able to obtain the geographical location of the
user. In such cases, we attribute a latency between users
using predictions from iPlane [34]. Exit nodes and moles
are chosen at random from available nodes in the graph.
We performed our evaluation for varying churn, wherein
the node uptimes and downtimes are modeled using Pois-
son distributions. Lastly, shortcuts are only created be-
tween nodes that have degree less than 50. This restric-
tion protects high-degree nodes from being overloaded
and restricts disclosure of high-value nodes to censors.

Figure 8(a) shows the improvement in the availabil-
ity of paths to exit nodes as we augment the underlying
social network for the Youtube dataset with additional
untrusted links. In this experiment, we set 10% of the
nodes to be exit nodes. We perform our experiment for a
range of node uptime values. For each value of expected
node uptime fraction f , we set the number of untrusted
links discovered by the RNL mechanism to be 2/f . This
parameter setting implies that each active node, in ex-
pectation, will have two untrusted links to other active
nodes in the system. The results show that the augmented
social overlay provides dramatically higher availability
of paths to exit nodes, especially when the node uptime
fraction is low (as is the case with most peer-to-peer sys-
tems [51, 22, 44, 31]).

The Youtube social network comprises about a mil-
lion users. We performed the analysis described above
on both smaller and larger social networks (e.g., the
Foursquare network with about hundred thousand users
and the Flickr network with about two million users) and
obtained results that were qualitatively similar. For ex-
ample, addition of untrusted links improved availability
from 39% to 97% for the Flickr social network and from
59% to 99% for the Foursquare social network under the
assumption that the fraction of node uptime is 0.2.

We also examined the improvement in latency of the
path to an exit node using the Youtube dataset. Fig-
ure 8(b) shows the CDF of latencies to any available exit
node when nodes are online for 50% of the time. We ex-
amine this with and without untrusted links, and observe
that the use of untrusted links also significantly lowers
latency. We also model a strong adversary that mon-
itors exposed shortcut nodes from 10000 moles in the
network. The censor also has the power to block all of a
node’s links if exposed to its moles.11 As expected, we
found a linear relationship between the number of attack
edges and the number of honest nodes exposed to moles.

11In practice, a censor would be able to block communications to the
relay only from those nodes within the censored domain.
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Figure 8: (a) Fraction of nodes with paths to exit nodes on the Youtube social network dataset for varying node uptimes and with
10% of the nodes being exit nodes. (b) Impact of untrusted links on latency to exit nodes when 50% of users are online. (c) Fraction
of nodes with paths to exit nodes under adversarial attacks on availability.
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More importantly, Figure 8(b) shows that there is mini-
mal degradation in both connectivity and performance as
a consequence of having the strong adversary.

Finally, we examined the impact of various types of
disruption attacks by adversarial nodes. We modeled an
adversary who had compromised a fraction of the nodes
in the social overlay and has the ability to drop proto-
col messages and disrupt transport channels by dropping
packets. In particular, we considered an adversary who
dropped RNL messages, forwarded exit node announce-
ments, and then dropped the data packets of an overlay
flow. Note that it is more effective for the adversary to
forward exit node announcements so as to position it-
self on more overlay transport paths. Figure 8(c) shows
the fraction of nodes with working paths to exit nodes as
we vary the fraction of live nodes that are compromised.
We find that connectivity in the augmented overlay is ad-
versely impacted only in the case of a determined adver-
sary who has compromised more than 20% of the nodes.

4.2 Transport Performance

We next consider microbenchmarks that allow us to ex-
amine the performance and latency enhancements made
possible by different versions of the transport layer. Per-
formance was evaluated using PlanetLab nodes located
across the US. In all trials, the topology consisted of four
disjoint paths from client to server, each with three hops.
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Figure 10: Latency performance within the overlay. With re-
dundancy, latency suffers less from slow/flaky paths.

All nodes were selected randomly from the available
pool, with nodes reselected between each trial. We also
imposed bandwidth rate limits of 1Mbps at each node.
In Figure 9, we present observed throughput achieved
with the various transport improvements: Transferring
data using an encrypted UDP transport, transferring data
concurrently over multiple paths, and dynamic use of re-
dundant packet transmissions. Throughput is measured
as the time required to transmit one megabyte of data.
Using multiple paths with UDP improves throughput lin-
early until three paths, where bandwidth of either the
source or destination limits its ability to transmit or re-
ceive more. We also examine the throughput of multi-
path flows that do not perform any redundant transmis-
sions in order to characterize the capacity lost due to re-
dundancy; this scheme provides only a marginal increase
in throughput indicating that the cost of redundant trans-
missions is low.

Figure 10 provides microbenchmark results that eval-
uate the use of redundant transmissions. We measure
the transmission time for a 100 kilobyte flow across the
same topology as the other experiments, with and with-
out the adaptive use of redundant transmissions. While
most links in our testbed had robust performance char-
acteristics, when slow or flakey links were encountered,
redundant transmissions were able to maintain a low la-
tency connection by mitigating retransmissions and in-
order delivery delays.

We conclude with an evaluation of web page load per-
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Figure 11: Web page load time across the Unblock overlay. Un-
block represents load times across a three hop overlay using the
optimized Unblock transport protocol. Single path TCP shows
baseline load times for the same topology using per-hop TCP
over a single overlay path.

formance through the overlay. We evaluated the perfor-
mance of our transport by inserting the Unblock overlay
as a relay to a SOCKS proxy. The PhantomJS headless
webkit browser was used to measure page load times of
popular websites. Much of the time spent rendering a
page comes from dependent resources, making network
latency more important than many systems admit. Pages
were loaded from the same set of domains as Figure 5.

This set of experiments demonstrates the huge impor-
tance of lowering latency in order to efficiently handle
the small, bursty traffic associated with web requests.
Figure 11 shows that Unblock has a fairly constant 2-5
second page load penalty compared with loading pages
directly. The use of UDP, the ability to take advantage
of multiple channels, and the credit-based flow control
already provides a significantly less variable and lower
latency service than the baseline transport that uses per-
hop TCP connections over a single overlay path. We
are continuing to improve performance as we complete
a public release. The wider deployment will also let us
see reactions to censorship, and potentially gain greater
understanding of the mechanism used by censors world
wide. We are already recording both live performance of
Unblock and censorship measurements from around the
world at unblock.cs.washington.edu.

5 Related Work
Providing privacy and anonymity for Internet data trans-
fers is a longstanding goal of the research community,
and we draw on many existing ideas in our design.
Anonymous Communications: A basic approach to
achieving anonymous data transfers is to interpose a third
party (or proxy) between the source and destination to
hide the source’s identity from the destination [3]. A
proxy, however, allows a single entity to learn the iden-
tities of both communicating parties. This lead to the
development of schemes that convey traffic through mul-
tiple intermediaries. Crowds [43] provides anonymity by
having an intermediary either choose a random successor

or simply transmit to the destination. Tor [17] leaves the
choice of relays to the source.
Censorship resistance: Naturally, anonymizing solu-
tions have been adapted to achieve censorship resis-
tance [40, 13]. A key stumbling block is that most
proxy-based anonymizing solutions aren’t membership
concealing. The Tor developers recognized this chal-
lenge [53] and use semi-secret bridges, but they can be
exposed with some effort (as we show in Section 2). Re-
cently, there has been a proposal for rearchitecting the
Internet to provide Tor like functionality at the network
level [33]. Also related to such an approach is Telex [57],
which utilizes steganography over random bits within an
HTTPS header to hide a tag that a middlebox can later
detect and use to reroute the packet. Both approaches
require pervasive changes at the network level and face
significant deployment challenges.
Sybil defenses: Many defenses have been proposed to
combat Sybil attacks. These include strong identities
minted by a logically centralized authority [19], com-
putational puzzles and bandwidth contributions to make
peers prove that they are not Sybils [8], and leveraging
social networks [60, 30]. Defenses based on social net-
works, such as SybilGuard [60, 59], might seem appro-
priate for our setting as they limit the creation of trust
relations to unknown identities based on the social net-
work properties of the requesting nodes. They are how-
ever insufficient for the threat model we consider partly
because they do not provide any mechanisms for con-
cealing the membership of the social network and partly
because they provide weak bounds on the number of trust
links created to Sybils by the network as a whole.

6 Conclusion
The desire for uncensored Internet access has motivated
the development of systems for censorship circumven-
tion. However, most popular systems are easily blocked
and often offer poor performance. In this paper, we
presented the design and implementation of Unblock, a
blocking-resistant overlay network that can reroute In-
ternet traffic to avoid censorship. Unblock is designed
to combine the security, privacy, and locality proper-
ties of routing over social networks with the more ro-
bust connectivity properties of open access overlays. It
is designed to be resilient to various blocking and infil-
tration attacks and provides high performance transport
over multi-hop overlays. Through large scale simulations
of the system and measurements of a prototype imple-
mentation deployed on PlanetLab, we show that Unblock
can provide high availability and improved performance.
We believe the ideas behind Unblock will allow it to im-
prove upon both the privacy and performance of existing
proxy-based censorship circumvention systems.
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